Energy Conservation Opportunities in Electroplating Process – A Case Study from CII

Energy Conservation Opportunities

- Energy Efficient Rectifier System IGBT Vs SCR Vs Diode Based Rectifier
- Selection of Bus Bar Rating
- > Automation of System
- Chemical Heating Electrical Vs Thermal Vs Solar
- Insulation of Tanks
- Pump selection and Control
- > Agitation Compressed Air Vs Lube Blower
- Basic Designing of Agitation system
- Evaporation Losses

Present System

- Diode base rectifier are used Electroplating
- Older technology

S.no	Name of Rectifier	Voltage	Current	Power	P.F	D.C Current	D. C. Volts	Rated Power in kVA
1	Anodizing	401	45.2	26.78	0.858	1000	40	40
2	Electro Polishing	402	14	8.1	0.84	500	30	15
3	Jig material Removing	401	7.1	4.3	0.88	500	12	6
4	Chrome	401	7.7	4.7	0.84	300	12	3.6
5	Plating-2	401	8	4	0.89	500	12	6
Total Power				47.88				70.6

Rectifier Type	IGBT Based		SCR Based	I	Diode Based
Rating KW Canacity	12V 12000A 144		10V 10000A 100		12V 10000A 120
DC voltage (V)	5.67		7.42		8.2
DC current (A)	7250		7250		7250
AC voltage (V)	420V/424V/422V		403V/411V/407V		418V/422V/421V
AC current (A)	74.73A/72.54A/72.83A		128.8A/152.6A/138.6A		112A/113A/112.3A
PF	0.99		0.92		0.96
KW	50.35		87.6		77.59
KVA	50.50KVA		95.46KVA		80KVA
% Efficiency	81.64		61.41		76.62
Start Time	1.57 PM		12.10PM		6.05PM
End Time	2.47PM		1.00PM		6.55PM
Duration	50M		50M		50M
Start KWH reading	588.3		525		647
End Time KWH reading	630.8		588.3		712.4
KW consumed in 50mir	42.5		63.3		65.4
KW consumed in 60 mi	51		75.96		78.48

Proposed System

- IGBT rectifier for Electroplating
- Latest technology
- Lower Power consumption
- Potential of more than 35% of energy saving in this case
- Generally we have experienced saving in range from
 20 50 % also

Savings = 47.88 kW x 30% x 4500 hrs/Annum x Rs 8.70/ Unit

Annual Savings	- Rs 5.6 Lakhs
Investment	- Rs 6.0 Lakhs
Pay Back	- 13 Months

Selection of Bus Bar Size

Points to be Consider

- **Material Mostly copper**
- Current Density 1.6 A/mm2 2.0 A/mm2
- 2000 A Bus bar
- ✤ 1250 mm2
- ✤ 125 x 10 mm Copper bus bar

For Aluminium

- Current Density 0.8 A/mm2 1.0 A/mm2
- 2000 A Bus bar
- ✤ 2000 mm2
- ✤ 2 x 100 x 10 mm Aluminium bus bar © Confederation of Indian Industry

Losses due to overheating in Bus Bars

Present System

- Electric Heaters are installed in several areas for water heating, chemical heating and space heating
- Power consumption in heaters are measured
- Cost Comparison of electric and Thermal heating is Analyzed

S.No.	Name of heater	Quantity	Measured(kW)	Rated (kW)
	Dipping Drying Room	11	2.7	2.7
plating -2	Cleaning Tank-1	1	2.1	2.5
	Cleaning Tank-2	1	2.6	2.5
	plating Tank	5	2.65	2.5
Plating-1	Cleaning Tank-1	2	2.1	2
	Cleaning Tank-2	1	2.1	2
	plating Tank	5	2.1	2
	Crome Tank	1	2.1	2
Anodizing Plant	Celing Tank	2	2.1	2
_	Color Tank	1	2.1	2
	Casting tank	1	2.1	2
Nickel mate	Mate nickel Tank	3	2.1	2
	Cleaning	1	2.1	2
	MSL Cleaning tank	1	2.1	2
Black Tank	Anthracite	1	2.1	2
	ultrasonic	1	2.1	2
	cleaning	1	2.1	2
Anthracite	Anthracite Tank	2	1.5	2
	gold	1	2.1	2
	Cleaning	1	2.1	2

Comparison of Heating cost in NG fired HWG

- Electric Heating cost- 125 kWh x Rs. 8.70/unit
 - = Rs 1087.50/ hr for 1 lakh kCal/hr
- Thermal heating cost 100000 / 8500 x 80 % efficiency
 - 14.70 scm/hr
 - 14.70 scm /hr x Rs. 45 /scm
 - Rs. 661.50 /hr

Considering 10 kWh energy consumption

Saving Potential - Rs. 345/hr

Action Plan

- Install NG based HWG for heating purpose of water and chemicals
- Remove the electrical heaters

Paint Dryer

- Install hot water to air heat exchanger
- Install circulation blower for proper circulation of hot air in dryer
- Minimize hot air leakages and radiation losses if any
- Install air filter to provide fresh air in dryer

Saving = Rs 345/hr x 12 hrs/day X 300 Days/Annum

Annual Saving Investment Pay Back Period

- Rs 12.42 Lakhs
- Rs 12.00 Lakhs
- 12 months

Solutions Offerings

<u>Solar Field</u> For Industrial Process Heating Applications

SmarTree For Smart Cities, Malls, Public Parks, Plazas, etc.

<u>Smart Kitchen</u> For Industrial & Institutional kitchens

SmarTrack

For high yield offgrid & utility scale Power Plants

Redefining Industrial Energy Generation SOLAR FIELD

Solar Field For Reducing Fuel Consumption In Industries

- 1. Incoming Solar Radiation gets concentrated by high efficiency Paraboloid Dish Concentrator onto a cavity receiver with minimum losses
- 2. The concentrated energy is heattransferred to various working fluids like hot water, Thermic Oils, etc.
- 3. Piping system routes energy from each receiver to end application for integration
- 4. Entire process is fully automated and dish tracks the Sun in two axis all year long

Solar Field Solution – An Integrated Approach For Displacing Fossil Fuels For Thermal Energy

Equivalent Energy Output From Dish

Paraboloid Dish Concentrator: Peak Rating 40,000 kcals/hr.

Shadow Analysis Tools For Optimized Layout And Energy Yield

Image © 2015 DigitalGlobe © 2015 Google

Solar Field Integration Is Seamless

- No impact on customer processes
- Back-ended integration
- Full automation, controls and safety implemented in Solar Field

Industry	Working Fluids	Temperature Range
Pharmaceutical	Steam, Air	80°C - 230°C
Textile industry	Water, Steam	60°C - 150°C
Chemical Industry	Steam, Air	80°C - 320°C
Pulp & Paper Industry	Steam	Up to185°C
Food Industry	Steam Thermic Oil	80°C - 280°C
Automobile Industry	Water, Steam	60°C - 200°C
Air Conditioning (VAM)	Water, Steam	60°C - 150°C

Clean Industrial Processes for Sustainable Manufacturing

Improve Surface Insulation to Reduce Radiation Losses of Tin Plating Tanks

Present System

- Thermal Imaging of tanks installed at Tin Plating Unit done for surface heat loss estimation
- Surfaces of tanks have high temperature
- Temperature range 70-80°C
- > A part of useful energy goes into Waste
- ➢ It should be around ambient +10 Deg.
- Good potential of energy saving by reducing radiation losses

Improve Surface Insulation to Reduce Radiation Losses of Tin Plating Tanks

S N	Description	Before Insulation	After Insulation	
1	Skin Tempreture (°C)	70	50	
2	Surface Area (m ²)	15	15	
3	Ambient Temperature (°C)	35	35	
4	Average Operating (Hours/ Yr)	8500	8500	
5	Heat Loss Due To radiation (kCal/ Hr)	6169	2419	
6	Annual Heat Loss(kCal/ year)	52434375	20559375	
7	Heat Value of one unit of Energy (kCal/kWh)	8	60	
8	Annual Unit loss/ Year	60970 23906		
9	Annual unit Saving (kWh/ Year)	37064		
10	Unit Rate (Rs/unit)	7.50		
11	Annual Saving (Rs. Lakh/ Year)	2.78		
12	Investment (Rs. Lakh) @Rs.2000/sqm	0.30		
13	Simple Pay Back Period (Months)	2		

Improve Surface Insulation to Reduce Radiation Losses of Tin Plating Tanks

Annual Savings Investment Payback Period

- Rs. 2.78 Lakhs
- Rs. 0.30 Lakh
- 2 Months

Improve Surface Insulation to Reduce Radiation Losses of Tanks

Present System

- Thermal Imaging of tanks installed at Tanks done for surface heat loss estimation
- Surfaces of tanks have high temperature
- Temperature range 65-75°C
- > A part of useful energy goes into Waste
- ➢ It should be around ambient +10 Deg.
- Good potential of energy saving by reducing radiation losses

Improve Surface Insulation to Reduce Radiation Losses of Tanks

S N	Description	Before Insulation	After Insulation
1	Skin Tempreture (°C)	65	50
2	Surface Area (m ²)	10	10
3	Ambient Temperature (°C)	35	35
4	Average Operating (Hours/ Yr)	8000	8000
5	Heat Loss Due To radiation (kCal/ Hr)	3450	1613
6	Annual Heat Loss(kCal/ year)	27600000	12900000
7	Heat Value of one unit of Energy (kCal/kWh)	860	
8	Annual Unit loss/ Year	32093 15000	
9	Annual unit Saving (kWh/ Year)	17093	
10	Unit Rate (Rs/unit)	7.50	
11	Annual Saving (Rs. Lakh/ Year)	1.28	
12	Investment (Rs. Lakh) @Rs.2000/sqm	0.20	
13	Simple Pay Back Period (Months)	2	

Improve Surface Insulation to Reduce Radiation Losses of Tanks

Annual Savings Investment Payback Period

- Rs. 1.28 Lakhs
- Rs. 0.20 Lakh
- 2 Months

Present System

- Presently pneumatic pumps is used for Pre Conditioning in Crome Plant
- Present flow around 50 cfm
- Specific power consumption: 17 kW/100 cfm
- Present Power consumption- 8.5 kW
- As a standard practice centrifugal pump should be used for such application
- Excellent saving potential

Action Plan

- Install Centrifugal pump with Titanium Coated Impeller
- > 0.5 kW pump will be operated
- Saving of 8 kW can be achieved

Saving = 8 kW x 24 Hr/ Day x 305 Days/ Yr x Rs. 8.14/ Unit

Annual Savings Investment Simple payback - Rs. 4.7 Lakhs

- Rs. 0.50 Lakh
- 2 months

 $\ensuremath{\textcircled{}}$ Confederation of Indian Industry

Install Centrifugal blowers in place of compressed air for agitation

Present System

- Presently compressed air is used for agitation
- Total number of points around 3
- Present flow around 20 cfm of each
- Specific power consumption: 17 kW/100 cfm
- Present Power consumption- 10.2 kW
- As a standard practice root blowers should be used for such application
- Excellent saving potential

Install Centrifugal blowers in place of compressed air for agitation

Action Plan

- Install Centrifugal blower
- 2.5 kW Blower will be operated
- Saving of 7.5 kW can be achieved

Install Centrifugal blowers in place of compressed air for agitation

Saving = 7.5 kW x 24 Hr/ Day x 305 Days/ Yr x Rs. 8.14/ Unit

Annual Savings Investment Simple payback - Rs. 4.48 Lakh

- Rs. 1.0 Lakh
- 4 months

Present System

Presently Compressed air and lube blower are used

- Compressed Air Inefficient way of operation
- Efficient Agitation System available

- Permit to increase current density for faster plating
- Reduce metal consumption that's to a better thickness distribution
- Reduce Heating
- Reduce Air borne fume emission

- EDUCTOR provide agitation of solution by the use of a centrifugal pump and a series of Eductors placed into the tank in a way similar at air agitation system.
- Each eductor increases 5 times input pump flow rate and therefore it permits to use a relatively small
- pump to recirculate a large volume of solution in the tank.

Present System

- Installed Blowers were studied
- Some of the blowers were damper controlled
- ✤ 20 50 % closed damper position on 3 nos of Blowers
- Inefficient way of flow controlling
- ✤ A part of energy goes into waste
- Cause low operational efficiency

Present System

S. No	Blower	Power Consumption (kW)	Damper Controlling %
1	FMUT – 26	11.34	50 %
2	FMUT – 27	8.9	50 %
3	FMUT - 28	21.30	30 %
	Total Power Consumption (kW)	41.60 kW	

 $\ensuremath{\mathbb{C}}$ Confederation of Indian Industry

Proposed System

- Install VFD on Identified blowers
- Keep open loop feed back system
- Set the frequency according to flow requirement
- Operate the fans at full damper opening
- On conservative basis at least 8.50 kW of power will be saved

Saving = 8.5 kW x 12 hrs/day x 300 Days/Annum x 8.7 Rs/Unit

Annual Saving Investment Simple Payback

- Rs 2.67 Lakhs
- Rs 2.00 Lakhs*
- 9 Months

* For 3 no. VFD for Blowers @ Rs.5000/kW

Efficiency

Pump η (%) = $\frac{Flow (lps) \times Head (m) \times Sp. Gr.}{102 \times \eta (motor) \times kW (I)}$

Efficiency Measurement of Pumps

Present System

- ✤ High pressure water pump at RO Plant studied in detail
- Operational parameter measured
- Capacity control methods were observed

Present Concern Area

- Discharge of HP pump was throttled to about 50%
- Power Consumption 4.70 kW
- Flow delivered 4.0 m3/hr
- Pressure drop across valve is very high
- Inefficient method of flow controlling
- ✤ A major part of energy goes into waste
- Cause low operational efficiency

Valve Controlling RO Plant High Pressure Pump

Valve Controlling

 $\ensuremath{\mathbb{C}}$ Confederation of Indian Industry

Proposed System

- Install VFD on RO high Pressure Pump
- Set the frequency according to flow requirement
- Operate the pump at full valve opening
- ✤ At least 2.20 kW of power will be saved

Saving = 2.20 kW x 12 hrs/day x 300 Days/yr x 8.70 Rs/Unit

Annual Saving Investment Pay back

- Rs 0.69 Lakh
- Rs 0.20 Lakhs
- 4 Months

- Compressed air leakage common in any industry
- But how much?
- Leakage is very tricky

✤ Higher the pressure – More will be the leakage

More the leakage – Higher the pressure drop at the farthest user

- Leakage test conducted
- Compressed air leakage Avoidable loss
 Within a limit

- ✤ Total compressed air generation around 300 350 cfm
- Estimated leakage 60 cfm
 - Percentage leakage around 20%
- Benchmark for air leakage
 - Leakage should not exceed 5-7% of generation
 - ➢ US and Europe benchmark 6%
- ✤ At least 40 cfm should be arrested
- Good potential for saving
- Involvement of all departments

- Maintenance & Production team to take initiatives
- Put tags on air leaking areas
- Maintenance team to arrest the leakage and remove the tags

- Bring down the leakage to 5 % in next 2-3 months
- ✤ Arrest leakage at war foot
- Conduct leakage test every week For next2-3 months
- ✤ Make weekly report
 - Reduction in percentage leakages
 - Number of tags put and removed
 - Reduction in number of tags in consecutive weeks

Savings = 7.20 kW x 12 Hours/Day x 300 Days/Annum x Rs. 8.70/Unit

Annual Savings	-	Rs 2.25 Lakhs
Investment	-	Rs 0.50 Lakhs
		(for maintenance)
Payback	-	3 Months

CII Experience of Similar Industries

- Omax Group
- Shriram Pistons
- Federal Mogul
- Indeutsch
- Hero Cycles and Supplier
- Yerik International
- > FMI
- > Nirankari Industries
- Lumax
- Max India
- > Avon Cycle Suppliers
- Uniparts Group
- Yamaha, Bajaj
- Many More

Thank You

